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Abstract
In density functional theory, the single-particle kinetic energy is still not known
in an orbital-free form. The natural tool to calculate such kinetic energy for a
given one-body potential V is the Dirac density matrix γ. Here, by first taking
solvable one-dimensional examples, and in particular the sech2(x) potential,
forms for the Dirac density matrix are exhibited in terms of the potential.This
in turn generates the Legendre transform of the single-particle kinetic energy.
Finally, one-dimensional perturbation theory for the kinetic energy density,
summed to all orders in V, is presented in the appendix.

PACS numbers: 02.30.−f, 03.65.−w

1. Introduction

Current quantitative calculations using density functional theory (DFT) are based on single-
particle Schrödinger equations into which a common one-body potential V is inserted, these
equations, of symmetrized Hartree form, being associated with the names of Slater [1],
Kohn and Sham [2]. Of course, a crucial problem for DFT is that the exchange-correlation
contribution, Vxc, to the one-body potential V is not known. However, even with a given V,

DFT is not directly employed to calculate the single-particle kinetic energy, this being obtained
by standard wavefunction procedures from the Slater–Kohn–Sham one-electron wavefunctions
generated by V. Numerous research groups continue the search for an orbital-free theory of
this kinetic energy, and the present study is in this area.

It is, of course, amply recognized that the ‘natural’ tool for the calculation of kinetic
energy is the first-order density matrix γ (r, r′). For a single Slater determinantal wavefunction
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generated by orbitals ψi(r), this goes back at least to Dirac [3] and is given by

γ (r, r′) =
∑

occupied i

ψi(r)ψ∗
i (r′) (1.1)

with the central tool of DFT, namely the ground-state density ρ(r), given immediately from
equation (1.1) as γ (r, r). Already, in their early study, March and Young [4] proposed a
variational approach in terms of ρ(r) to approximate γ (r, r′). Of course, the single-particle
kinetic energy density, say t (r), is derivable directly from equation (1.1) as

t (r) = − h̄2

2m

∂2γ (r, r′)
∂r2

∣∣∣∣
r′=r

. (1.2)

It is clear that, in order to obtain the single-particle kinetic energy functional T [ρ] from
equation (1.2),

T =
∫

t (r) dr, (1.3)

one requires knowledge of γ (r, r′) in terms of its diagonal element ρ(r). In turn, ρ(r) is
generated by the DFT potential V (r), and T [V ] is referred to as the Legendre transform of
T [ρ]. However, in order to present explicit examples in which the Dirac density matrix γ can
be expressed directly in terms of V, then leading via equations (1.2) and (1.3) to the Legendre
transform T [V ], we shall at first restrict ourselves here to one dimension, and to model choices
of the one-body potential V (x).

We clarify a few points on the presentation which follows, and especially the relation
of this study to the Thomas–Fermi (TF) method, before passing to the treatment of one-
dimensional model potentials. First, the leading kinetic TF term in the single-particle kinetic
energy functional t[ρ] has the density power ρ1+2/D in D dimensions. In the models discussed
below we note that (i) D = 1, therefore (ii) tTF[ρ] ∝ ρ3 (not ρ5/3 as in three dimensions) and
(iii) ρ ∝ (µ − V )1/2, where µ is the chemical potential and V (x) is the one-body potential.
Then, as a specific example of the Legendre transform referred to above, tTF(V ) ∝ (µ−V )3/2;
but it is also relevant for what follows to note that there is an equivalent form of tTF, namely,
tTF ∝ ρ(µ − V ), in which both ρ and V now enter the kinetic energy. In this connection
we also emphasize that one must interpret carefully some of the formulae in sections 2 and
3, e.g., equations (2.11) and (3.6). The point to be clarified here is that both these equations
refer to small numbers of occupied levels generated by the one-body potential, whereas the
TF method, having statistical origins, comes into its own when large numbers of energy levels
are occupied. However, we emphasize in this context that section 4 is intimately connected
to, and clearly transcends, the original TF method; the same being true of appendix C.

Returning to model potentials, we begin with a sech2(x) form of V (x), for which a
number of analytic results are derivable.

2. One-dimensional potential V (x) of sech2(x) form

Though work on the sech2(x) potential has a long history, we find the study of Hall [5] a
valuable starting point. Given the potential

V (x) = −v(v + 1) sech2(x), (2.1)

the Schrödinger equation is

−∂2ψ(x)

∂x2
− v(v + 1) sech2(x)ψ(x) + (v − n)2ψ(x) = 0 (2.2)
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using Hall’s expression for the eigenvalues, F(n, v) = −(v − n)2. The solutions of
equation (2.2) are of the form

ψ(x) = C1P
v−n
v (tanh(x)) + C2Q

v−n
v (tanh(x)),

where P and Q are the associated Legendre functions (as defined for instance in Abramowitz
and Stegun [6]). The Q′s can be eliminated as non-physical solutions; n ranges from
0, 1, 2, . . . , and the nth eigenvalue appears only when v > n. The density for non-interacting
particles can then be written as

ρ(x) =
∑

n

Cn,v

∣∣P v−n
v (tanh(x))

∣∣2
(2.3)

and the density matrix as

γ (x, x ′) =
∑

n

C2
n,vP

v−n
v (tanh(x))P v−n∗

v (tanh(x ′)), (2.4)

or, in terms of the potential,

γ [V (x), V (x ′)] =
∑

n

C2
n,vP

n−v
v

(√
1 + V (x)/v(v + 1)

)
P n−v∗

v

(√
1 + V (x ′)/v(v + 1)

)
. (2.5)

Thus, from (2.5), the kinetic energy density tg(x), defined (compare the wavefunction gradient
(g) form ∝ (∇ψ)2) as

tg(x) = h̄2

2m

∂2γ

∂x ′∂x

∣∣∣∣
x ′=x

(2.6)

can be written as

tg[V ] = v(v + 1)

8(v(v + 1) + V (x))V (x)2

v−1∑
n=0

C2
n,v

[
(n − 2v − 1)P n−v

v+1

(√
1 + V (x)/v(v + 1)

)

+ (v + 1)
√

1 + V (x)/v(v + 1)P n−v
v

(√
1 + V (x)/v(v + 1)

)]2
(2.7)

provided that v is integral. Then P v−n
v takes the form of a finite sum, and ρ(x) is a finite sum

of powers of tanh2(x) (and so of V (x)); for instance, for v = 4, n = 0 − 3, the total density
assuming singly occupied levels is

ρ(x) = 1.406 25 − 5.468 75 tanh8(x) + 8.75 tanh6(x) − 4.6875 tanh4(x), (2.8)

which integrates to 4. The density matrix itself for this case can also be written, but is relegated
to appendix A because of its lengthy form. However, figure 1 shows the density (solid line)
obtained from equation (2.8) and γ (x, x ′)|x′=x (dots) from equation (A.1) as a function of x
(Hall’s scaled units [5] are used). As already mentioned, we can write the density as a function
of the potential V (x) here, the result being

ρ(x) = −0.341 796 875 × 10−4V 4 − 0.164 0625 × 10−2V 3 − 0.028 125V 2 − V/4, (2.9)

which is plotted in figure 2.
But a simpler example is that with v = 2, n = 0 − 1, i.e., two filled states in a potential

V (x) = −6 sech2(x). Then the density (normalized to 2) is just

ρ(x) = 3
4 (1 − tanh4(x)) (2.10)

or, in terms of the potential,

ρ = −V

4

(
1 +

V

12

)
. (2.11)
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Figure 1. The total density ρ(x), assuming singly occupied levels, for the case v = 4, n = 0 − 3
of the sech2(x) potential, compared to γ (x, x′)|x′=x , given in appendix A, equation (A.1). The
density (solid line) is obtained from equation (2.8), and γ (x, x′)|x′=x (dots) from equation (A.1).

Figure 2. Density ρ(x) for the case v = 4, n = 0 − 3 of the sech2(x) potential, as a function of
the potential V (x).

So here we can solve for V [ρ] to get (only the physical solution being recorded here)

V [ρ] = −6.0 + 1.92(9.765 625 − 13.020 833ρ)1/2 (2.12)

which is displayed in figure 3. The corresponding density matrix is

γ (x, x ′) = 3
2 sech2(x) sech2(x ′)

(
1
2 + sinh(x ′) sinh(x)

)
. (2.13)

Figure 4 shows a plot of ρ(x) (solid line) and γ (x, x ′)|x ′=x (circles).
Having, thus, verified the equivalence of equation (2.10) for the ground-state density and

the diagonal term γ (x, x) of the Dirac density matrix (2.13), we turn to one major focus of the
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Figure 3. Potential V [ρ] for two filled states in a potential V (x) = −6 sech2(x).

Figure 4. Density ρ(x) (solid line) and γ (x, x′)|x′=x (circles) compared for the v = 2, n = 0, 1
case of the sech2(x) potential.

present study: namely to obtain this matrix (2.13) in compact form in terms of the one-body
potential V (x).

3. Dirac density matrix for two-level sech2(x) potential in terms of V (x) and derivatives

Since the Dirac density matrix γ (x, x ′) in equation (2.10) is generated by the potential
V (x) = −6 sech2(x), we can evidently write for γ the form
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γ (x, x ′) = V (x)V (x ′)
24

[
1

2
+ sinh(x) sinh(x ′)

]
. (3.1)

Forming ρ(x) = γ (x, x ′)|x ′=x from equation (3.1) we can solve for the quantity V (x) sinh(x),

which leads to the result

γ (x, x ′) = V (x)V (x ′)
48

+

[
ρ(x) − V 2(x)

48

]1/2 [
ρ(x ′) − V 2(x ′)

48

]1/2

. (3.2)

But using next equation (2.11) for ρ in terms of V, we eliminate ρ from equation (3.2) to find

γ (x, x ′) = V (x)V (x ′)
48

+
1

4

[
−

{
V (x) +

V 2(x)

6

}]1/2 [
−

{
V (x ′) +

V 2(x ′)
6

}]1/2

, (3.3)

or in terms of V alone,

γ (x, x ′) = 3

2

V (x)

6

V (x ′)
6

(
1/2 +

√
−6/V (x) − 1

√
−6/V (x ′) − 1

)
. (3.4)

This result (3.3) or (3.4), for this admittedly simplistic sech2(x) for two levels, exemplifies a
long-term aim which already had its origins in the variational density matrices proposed by
March and Young [4]. However, they constructed γ [ρ], whereas equation (3.3) is, of course,
γ [V ].

3.1. Kinetic energy in Legendre transform

Inserting equation (2.13) into equation (2.6), we find the Legendre transform result for the
kinetic energy to be

tg[V ] = [V ′(x)]2

96
− 1

16

[V ′(x)(1 + V (x))/3]2

[V (x)(1 + V (x)/6)]
, (3.5)

or equivalently

tg[V ] = − V

144
(V 2 + 6V + 18). (3.6)

While equation (3.6) represents a quite explicit example of the Legendre transform of the
kinetic energy density, we wish at this point to stress again the general Dirac density matrix
γ (x, x ′) in equation (2.5) for the sech2(x) potential. Then we can justifiably claim that this
equation (2.5) inserted into equation (2.6) leads to a Legendre transform-like expression for
the kinetic energy density tg(x), as in equation (2.7).

4. Kinetic energy density t(x) based on perturbation expansion in V (x), with free
electrons as the unperturbed problem

We follow in this section the three-dimensional perturbation study of March and Murray [7],
who generated the Dirac density matrix γ (r, r′) from a one-body potential V (r) inserted into
an originally uniform free Fermi gas, taken as the unperturbed problem. If we write the
March–Murray series for the diagonal element ρ(r) = γ (r, r′)|r′=r as

ρ(r) = ρ0 +
∞∑

j=1

ρj (r), (4.1)

where ρj (r) is O(V j ) and ρ0 is the constant unperturbed density, then these workers showed
that when V (r) varied sufficiently slowly in r-space then equation (4.1) summed to the well-
known Thomas–Fermi approximation [7] discussed briefly in the introduction.
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Subsequently, Stoddart and March [8] used the March–Murray perturbation series for
γ (r, r′) to derive the kinetic energy density t (r) as

t (r) = t0 = −V (r)
∑

j

cjρj (r), (4.2)

ρj (r) being as in equation (4.1). In the three-dimensional case, Stoddart and March [8]
derived cj as j/(j + 1), and since, as already mentioned ρj (r) is already known as O(V j ),

equation (4.2) is a Legendre transform result for T [V ] = ∫
t (r) dr. Unfortunately to date the

summation in equation (4.2) has not proved tractable.
However, what we show below is that, in one dimension, the focus of the present study,

the analogue of equation (4.2), can in fact be summed to all orders, though in doing so,
as explained below, the density ρ enters the result, as well as the potential V. This is not
especially surprising because in the summation

∑
j cjρj appearing in equation (4.2) we can

in three dimensions [8] write cj = j/(j + 1) = 1 − (j + 1)−1 and hence using equation (4.1)
we have

∑
j cjρj = ρ(r) − ρ0 − ∑

j ρj /(j + 1).

The key result in achieving the summation of the one-dimensional analogue of
equation (4.2) is the differential virial theorem derived by March and Young [9]. This reads

∂t

∂x
= −1

2
ρ

∂V

∂x
− ρ ′′′

8
, (4.3)

which follows from the equation of motion for γ (x, x ′) by expansion of this matrix around
the diagonal x ′ = x. We give the detail in appendix C, and merely summarize the result here.
Writing the one-dimensional form of equation (4.2) as

t (x) − t0 = −V (x)�(x) (4.4)

we obtain in appendix C the form of � as

�(x) = 1

2V (x)

∫ x

ρ(s)
∂V (s)

∂s
ds +

1

8V (x)

∂2ρ

∂x2
. (4.5)

Though the analogue of equation (4.1) can be derived in one dimension, we have not effected
the summation required to allow ρ(x) appearing in equation (4.5) to be written in closed form
in terms of V (x). Thus, combining equations (4.4) and (4.5), we have indeed an orbital-free
theory of t (x) − t0, where, as in section 1, t0 ∝ ρ3

0 in one dimension, but not a Legendre
transform T [V ] since, as discussed above, ρ also appears. Of course, one now has a problem
in which the Fermi level lies in the continuum, in contrast to, for example, result (3.3) for
γ (x, x ′) for the sech2(x) potential, in which the Fermi level is in the bound-state region of the
spectrum.

While this section embodies our main findings for a general one-dimensional potential
V (x), in appendix D we summarize some results for the delta-function potential V (x) =
λδ(x), which we return to briefly in section 5.

5. Summary and future directions

The idempotent Dirac density matrix γ (x, x ′) generated by a one-dimensional potential V (x)

has been studied for model potentials. Quite explicit results are presented for the lowest two,
and four occupied levels generated by the potential sech2(x) given in equation (2.1). The
two-level result corresponding to the general result (2.5) has been written in equation (3.4)
solely in terms of V (x). This then leads to the result (3.6) for the positive definite form tg(x)

in Legendre transform. In fact, one can rewrite the general form (2.4) for an arbitrary number
of occupied energy levels generated by the sech2(x) potential solely in terms of V (x), though
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the result is somewhat complicated, as seen in equation (2.7). Nevertheless, this example,
admittedly simplistic, leads to an explicit orbital-free theory of single-particle kinetic energy,
which is a long-term aim of numerous current workers in density-functional theory.

As a further example, dealt with quite briefly in appendix D, the repulsive delta-function
potential V (x) = λδ(x) is treated, the resultant ρ–V relation in this case being given in
the form of a differential equation in which the λ (or V !) dependence is exhibited. Though
we have, as yet, not found a solvable model example, section 4 and appendix C return to
the theme of generating the kinetic energy density without recourse to orbitals for a general
one-dimensional potential V (x). This is already implicit in the March–Young [9] differential
form of the virial theorem. But what appendix C demonstrates is that the Stoddart–March
[8] three-dimensional perturbation series has an analogue in one dimension which can be
summed. However, the sum presented involves both the ground-state density ρ(x) and the
potential V (x) which generates it.

As to future directions, it will be, of course, of interest to study further models in which
the Legendre transform of the kinetic energy can be generated. One which comes to mind is an
exponentially decaying potential V (x). In a central field context, this was found to be tractable
analytically in the context of localized impurity scattering in a free-electron metal [10]. But
clearly, the most important directions for the future will involve two- and three-dimensional
problems. The summation of the Stoddart–March series (4.2) in three dimensions would be a
major step, of course, in the search for an orbital-free single-particle kinetic energy density.
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Appendix A. Dirac density matrix for four occupied levels of the sech2(x) potential

The purpose of this brief appendix is to give the explicit form of the Dirac density matrix
γ (x, x ′) for the sech2(x) potential (2.1) with v = 4. Equation (2.4) can be calculated quite
explicitly as

γ (x, x ′) = 20[39 cosh(x + x ′) − 5 cosh(2x + 4x ′) + 46 cosh(2x + 2x ′) − 5 cosh(4x + 2x ′)
− 15 cosh(x ′ + 3x) − 15 cosh(3x ′ + x) + 9 cosh(3x ′ + 3x) + cosh(4x + 4x ′)
+ 39 cosh(x ′ − x) − 15 cosh(3x ′ − x) − cosh(−4x + 4x ′)
− 46 cosh(−2x + 2x ′) + 5 cosh(−4x + 2x ′) + 5 cosh(−2x + 4x ′)
+ 9 cosh(3x ′ − 3x) − 15 cosh(x ′ − 3x)]/[100 cosh(x + x ′) + 50 cosh(x ′ + 3x)

+ 50 cosh(3x ′ + x) + 25 cosh(3x ′ + 3x) + cosh(5x + 5x ′) + 5 cosh(5x + 3x ′)
+ 5 cosh(3x + 5x ′) + 10 cosh(5x ′ + x) + 10 cosh(5x + x ′) + 100 cosh(x ′ − x)

+ 50 cosh(3x ′ − x) + 25 cosh(3x ′ − 3x) + 50 cosh(x ′ − 3x) + cosh(−5x + 5x ′)
+ 10 cosh(−x + 5x ′) + 10 cosh(−5x + x ′) + 5 cosh(−5x + 3x ′)
+ 5 cosh(−3x + 5x ′)]. (A.1)

Two points to be made concerning this density matrix are that (a) it reduces to equation (2.8)
on the diagonal x ′ = x and (b) it is an idempotent matrix.
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Figure 5. Slater sum Z(x, β) over the bound states of the sech2(x) potential with v = 4, n = 0−3,

plotted for several values of β. Z(x, β) approaches the curve for the density as β decreases: here,
the solid (top) curve is for β = 0.05, the second (dashed) is for β = 0.02 and the third (dots) for
β = 0.01. The lowest curve (circles) is the density ρ(x) itself. Hall’s scaled units are used.

Appendix B. Bound-state Slater sum for two examples of the sech2(x)
one-body potential

For the first case recorded in the main text for the sech2(x) potential, with v = 4, n = 0 − 3,

we can sum over these bound states to find the Slater sum Z(x, β) defined by

Z(x, β) =
∑

occupied bound states i

exp(−βεi)|ψi(x)|2, (B.1)

where εi are the eigenvalues of the occupied states. Inserting these plus the corresponding
eigenfunctions in equation (B.1) leads to explicit form (B.2):

Z(x, β) = {15.3125 exp(4β) + [−6.5625 exp(8β) − 15.3125

+ 1.093 75 exp(15β)] exp(β)} tanh8(x) + {−35 exp(4β) + [−4.375 exp(15β)

+ 19.6875 exp(8β) + 28.4375] exp(β)} tanh6(x) + {24.375 exp(4β)

+ [6.5625 exp(15β) − 15.9375 − 19.6875 exp(8β)] exp(β)} tanh4(x)

+ {−5 exp(4β) + [2.8125 + 6.5625 exp(8β)

− 4.375 exp(15β)] exp(β)} tanh2(x)

+ 0.3125 exp(4β) + 1.093 75 exp(16β). (B.2)

This is plotted for several values of β in figure 5. We see that it approaches the curve for the
density: here (Hall’s scaled units are used throughout this appendix), the solid (top) curve is
Z for β = 0.05, the second (dashed) is for β = 0.02 and the third (dots) for β = 0.01. The
lowest curve (circles) is the density ρ(x) itself.

The same sum for the allowed bound states for the v = 2, n = 0, 1 case above gives

Z(x, β) = {0.75[tanh4(x) − 2 tanh2(x) + 1] exp(3β) − 1.5 tanh2(x)[tanh2(x) + 1]} exp(β),

(B.3)
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Figure 6. Slater sum Z(x, β) for the bound states for the v = 2, n = 0, 1 case of the sech2(x)

potential: the top curve is for β = 0.1, the second (dashed) curve is for β = 0.05, while the third
(dots) corresponds to β = 0.02. The lowest curve (circles) depicts the density ρ(x). Hall’s scaled
units are used.

with a corresponding series of plots (figure 6) where the top curve is now for β = 0.1, the
second (dashed) curve is for β = 0.05, while the third (dots) corresponds to β = 0.02. The
lowest curve (circles) depicts the density ρ(x). We also note that we can write the bound-state
sum Z as a function(al) of ρ, when we obtain

Z[ρ] = 3
4

[
7
4 − ρ − 2

(
3
4 − ρ

)1/2 ]
exp(3β) − 3

2

(
3
4 − ρ

)1/2[
1 +

(
3
4 − ρ

)1/2]
exp β. (B.4)

It is true that the displayed eigenvalues in the exponential terms in equation (B.4) are naturally
determined by the choice of one-body potential V (x), or equivalently by the ground-state
density ρ(x). Both the Slater sum for v = 2 and v = 4 satisfy the differential equation

1

4

∂3Z

∂x3
− ∂2Z

∂x∂β
− V (x)

∂Z

∂x
− 1

2

∂V

∂x
Z = 0. (B.5)

Appendix C. Kinetic energy density of one-dimensional Fermi gas perturbed
by potential V (x)

Stoddart and March [8] derived, for a localized potential V (r) in three dimensions embedded
in an initially uniform homogeneous electron gas, with density ρ0 and kinetic energy density
t0 = ckρ

5/3
0 , where ck = (3h2/10m)(3/8π)2/3, an expression for the kinetic energy density

change t (r) − t0, which had the form

t (r) − t0 = −V (r)
∑

. (C.1)

They obtained
∑

to all orders in V, but were not able to effect a summation analytically of
this perturbation series.

A major advantage in one dimension is that March and Young [9] used the equation of
motion of the density matrix γ (x, x ′) to derive the differential form of the virial theorem,



Dirac density matrix and the Legendre transform of the kinetic energy generated by 1D model potentials 575

quoted in equation (4.3). Assuming form (C.1) in one dimension also, we shall below derive
a closed form for �. Writing � = −(t − t0)/V, differentiating with respect to x, and using
equation (4.3) readily yield

�′ +
1

V (x)

∂V (x)

∂x
� = ρ

2

∂ ln V

∂x
+

ρ ′′′

8V
(C.2)

or equivalently

1

V (x)

∂(�V )

∂x
= ρ

2

∂ ln V

∂x
+

ρ ′′′

8V
. (C.3)

Equation (C.3) then integrates to yield

�V = 1

2

∫ x

V (s)ρ(s)
∂ ln V (s)

∂s
ds +

1

8
ρ ′′(x). (C.4)

Hence with the use of the differential form of the virial theorem in equation (C.2), which
is however restricted to one dimension, the analogue of the three-dimensional result (C.1) can
be formally summed to all orders to yield equation (4.5). However, this does not give the
Legendre transform of t (x) explicitly, after insertion in equation (4.4), since the density ρ(x)

is involved as well as the potential V (x).

Appendix D. Results for the repulsive potential λδ(x) and in particular for the
integrated density of states ρ(x, E) as a function of coupling strength λ

In [10] it was found that the Slater sum Z(x, β) for the potential λδ(x) was given by

Z(x, β) = 1√
2πβ

− λ exp(λ2β/2) erfc(λ
√

2β/2) +
λ

2
erf(x

√
2/β)

+
λ

2
exp(λ2β/2) exp(2λ|x|) erfc

(√
2β

(
λ

2
+ |x|

))
. (D.1)

Taking the inverse Laplace transform of Z(x, β)/β, we can write the density ρ(x,E) as

ρ(x,E) =
√

2E

π
+

λ

π
Si(2x

√
2E) +

2λ

π
[exp(2λx)/2 − 1] arctan(

√
2E/λ)

− λ exp(2λx)

∫ 23/2x/π

0
exp

(
− kλ√

2

)
sin(k

√
E)

k
. (D.2)

With this expression for ρ(x,E), we obtain

∂2ρ

∂x∂E
= −2λ2

√
E sin(2x

√
2E) + λ3

√
2 cos(2x

√
2E)

π
√

E(2E + λ2)
. (D.3)

If we write this in the form

∂2ρ

∂x∂E
= f1 sin(2x

√
2E) + f2 cos(2x

√
2E), (D.4)

we have evidently then

f1 = −2λ2

π(2E + λ2)
, f2 = λ3

√
2

π
√

E(2E + λ2)
. (D.5)

It follows that

∂2

∂x2

[
∂2ρ

∂x∂E

]
+ 8E

[
∂2ρ

∂x∂E

]
= 0, (D.6)
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and equation (D.6) can then be integrated with respect to x to give

∂2

∂x2

[
∂ρ

∂E

]
+ 8E

[
∂ρ

∂E

]
− g(E) = 0, (D.7)

or with respect to E, to give

∂3ρ

∂x3
+ 8

∫
E

[
∂2ρ

∂x∂E

]
dE = h(x), (D.8)

with g(E) and h(x) being unknown functions. However, g(E) can be evaluated directly, using
the expression for ρ, to give

g(E) = 4
√

2E(2E − λ2)

π(2E + λ2)
. (D.9)

Recourse to the differential virial theorem (4.3) will allow the kinetic energy per unit length
t (x, E, λ) to be studied, but we shall not elaborate on the details.
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